Calcium-Permeable AMPA Receptors in the Retina

نویسنده

  • Jeffrey S. Diamond
چکیده

The retina transforms light entering the eye into a sophisticated neural representation of our visual world. Specialized synapses, cells, and circuits in the retina have evolved to encode luminance, contrast, motion, and other complex visual features. Although a great deal has been learned about the cellular morphology and circuitry that underlies this image processing, many of the synapses in the retina remain incompletely understood. For example, excitatory synapses in the retina feature the full panoply of glutamate receptors, but in most cases specific roles for different receptor subtypes are unclear. In this brief review, I will discuss recent progress toward understanding how Ca(2+)-permeable AMPA receptors (CP-GluARs) contribute to synaptic transmission and newly discovered forms of synaptic plasticity in the retina.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Postsynaptic Plasticity Triggered by Ca2+-Permeable AMPA Receptor Activation in Retinal Amacrine Cells

Amacrine cells are thought to be a major locus for mechanisms of light adaptation and contrast enhancement in the retina. However, the potential for plasticity in their AMPA receptor currents remains largely unknown. Using paired patch-clamp recordings between bipolar cell terminals and amacrine cells, we have simultaneously measured presynaptic membrane capacitance changes and EPSCs. Repetitiv...

متن کامل

Synaptic contribution of Ca2+-permeable and Ca2+-impermeable AMPA receptors on isolated carp retinal horizontal cells and their modulation by Zn2+.

Ca(2+)-permeable and Ca(2+)-impermeable AMPA receptors are co-expressed on carp retinal horizontal cells. In the present study, we examined the synaptic contribution and Zn(2+) modulatory effect of these two AMPA receptor subtypes using whole-cell patch clamp technique. Specific Ca(2+)-permeable AMPA receptor antagonist (1-naphthyl acetyl spermine, NAS) and selective Ca(2+)-impermeable AMPA rec...

متن کامل

Functional evidence for D-serine inhibition of non-N-methyl-D-aspartate ionotropic glutamate receptors in retinal neurons.

D-Serine is an important signaling molecule throughout the central nervous system, acting as an N-methyl-D-aspartate (NMDA) receptor coagonist. This study investigated the D-serine modulation of non-NMDA ionotropic glutamate receptors expressed by inner retinal neurons. We first identified that the degradation of endogenous retinal D-serine, by application of D-amino acid oxidase, caused an enh...

متن کامل

Elevated glucose changes the expression of ionotropic glutamate receptor subunits and impairs calcium homeostasis in retinal neural cells.

PURPOSE Altered glutamatergic neurotransmission and calcium homeostasis may contribute to retinal neural cell dysfunction and apoptosis in diabetic retinopathy (DR). The purpose of this study was to determine the effect of high glucose on the protein content of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and kainate glutamate receptor subunits, particularly the GluR2 subunit...

متن کامل

Calcium-permeable AMPA receptors containing Q/R-unedited GluR2 direct human neural progenitor cell differentiation to neurons.

We identify calcium-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors on human neural progenitor cells (NPCs) and present a physiological role in neurogenesis. RNA editing of the GluR2 subunit at the Q/R site is responsible for making most AMPA receptors impermeable to calcium. Because a single-point mutation could eliminate the need for editing at the Q/R site...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2011